

Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings

AS2312

Adam Hockey – NSW Branch President ACA

Who is the ACA?

The Cost of Corrosion

Corrosion is estimated to cost 3.5% - 5.2% of Global Gross Domestic Product.

This equates to approximately AUD\$100 billion across Australia and New Zealand.

By implementing current "best practice", savings of around 15% - 35% of this cost could be achieved.

To provide protection...

That withstands and lasts **longer** to reduce environmental impact.

11/

AS2312

AS/NZS 2312 'Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings'

- Part 1: Paint Coatings
- Part 2: Hot dip galvanising

-	
1	AS/NZS 2312.1:2014
1	
i.	
11	
1	August K. August A.
1	Australian/New Zealand Standard™
1	Guide to the
1	Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings
1	
	Part 1: Paint coatings
	anga anga
1	
1	
1	
II.	
4	
1	STANDARDS
	STANDARDS
	AND

AS2312.1

- Australian standards set out specifications and design procedures.
- These ensure products and services perform safely, reliably, and the way they're intended to.
- National Construction Code (NCC), performance requirements reference AS2312

AS2312.1

- 1 Scope and General
- 2 Classification of environments
- 3 Planning and Design and Fabrication for Corrosion Protection
- 4 Surface Preparation
- 5 Factors Influencing Paint Coating Selection
- 6 Paint Coating Systems for Corrosion Protection
- 7 Painting and Paint Application Methods
- 8 Maintenance of paint coatings systems
- 9 Inspection and Testing
- 10 Preparation of Coating Specifications

1	AS/NZS 2312.1:2014	
1		
1		
н.		
1		
4		
1	Australian/New Zealand Standard™	
1		
1	Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings	
	the use of protective coatings	
	Part 1: Paint coatings	
	30	
1		
Ì		
1		
1		
1	STANDARDS	
	STANDARDS S	
	SAND	

Appendices AS2312.1

- 1 Guidance on the use of this standard
- 2 Factors influencing corrosivity
- 3 Paint coatings for non-atmospheric and hot environments
- 4 Description of paint types
- 5 Economics of corrosion protection
- 6 Volatile Organic Compounds (VOC's)
- 7 Typical criteria for selected coatings specifications
- 8 Powder coatings and tape wrappings

-	
	AS/NZS 2312.1:2014
1	Konzo zo rz
i i	
i i	Australian/New Zealand Standard™
1	
1	Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings
1	the use of protective coatings
	Part 1: Paint coatings
1	
1	
1	
1	
4	
I	
1	
1	STANDARDS
	STANDARDS S

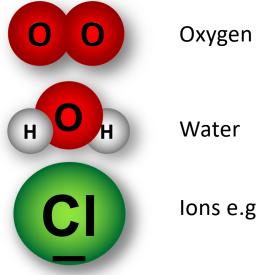
Section 1 - Scope and General

1.6 DURABILITY CONSIDERATIONS

As the protection provided by the coating systems covered by this Standard is usually shorter than the expected service life of the structure, due consideration should be given to maintenance or renewal requirements at the planning and design stage.

Any components of the structure which are not accessible after assembly should be provided with a corrosion protection system that will remain effective for the service life of the structure. If this cannot be achieved by means of a protective coating system, other measures, such as manufacturing from a corrosion-resistant material, designing for replacement or specification of a corrosion allowance, should be taken.

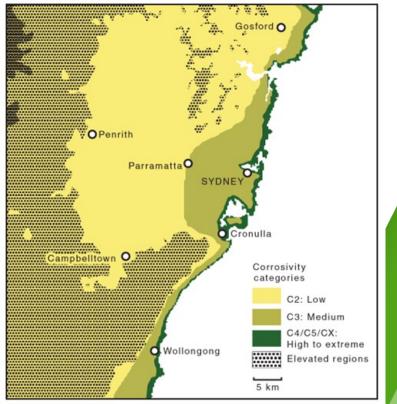
Section 2 - Classification of Environments


- 2.1 General
- 2.2 Micro-Environments
- 2.3 Atmospheric Corrosivity Categories
- 2.4 Other Environments

Section 2.1 – General

• Steel corrodes (rusts) if exposed to

lons e.g. Chlorides


• STOP any of these from reaching the steel, and corrosion won't occur

Section 2 - Classification of Environments

Note : The major factors which affect atmospheric corrosion , and hence atmospheric corrosivity categories based on ISO 9223, are given in AS4312

Section 2.2 Micro-Environments

At locations where the metal surface remains damp for an extended period , such as where surfaces are not freely drained or a shaded from sunlight

On unwashed surfaces,

i.e. surfaces exposed to atmospheric contaminants, notably coastal salts,but protected from cleansing rain

2.3 Atmospheric Corrosivity Categories

TABLE 2.1

ATMOSPHERIC CORROSIVITY CATEGORIES

Corrosivity categories	Former AS/NZS 2312 Category	Corrosion rate for steel µm/year	Corrosion rate for zinc µm/year	Typical exterior environment	Examples of interior environments
C1: Very low	А	<1.3	<0.1	Few alpine areas	Offices, shops
C2: Low	В	1.3 to 25	0.1 to 0.7	Arid/rural/urban	Warehouses, sports halls
C3: Medium	С	25 to 50	0.7 to 2.1	Coastal	Food processing plants, breweries, dairies
C4: High	D	50 to 80	2.1 to 4.2	Sea-shore (calm)	Swimming pools, livestock, buildings
C5-I: Very high (Industrial)	E-I	80 to 200	4.2 to 8.4	Within chemical plants	Plating shops, chemical sites
C5-M: very high (Marine)	E-M	80 to 200	4.2 to 8.4	Sea-shore (surf)/ offshore	—
CX		200 to 700	8.4 to 25	Shoreline (severe surf)	Adjacent to acidic processes
T: Inland Tropical	F			Non-coastal tropics	

A

2.3 Atmospheric Corrosivity Categories

Standards								T.	ABLE 6.	3 (continu	ued)					-					S 2312.1:2014
						Coa	ting system detail	s							Du	rabilit	y—Yea	urs to first i	naintenanc	e	:201
Australia				1st C	oat		2n	d Coat			3rd Coat		Total			Atmos	pheric	corrosivity	category		1
alia	System designation	ISO 12944-5 designation (Note 1)	Surface preparation	Туре	PRN	Nom DFT µm	Type	PRN	Nom DFT µm	Type	PRN	Nom DFT µm	nom DFT µm	Cl Very low	C2 Low	C3 Med		C5-I Very high industrial		T Inland Tropical	
	POLYURET	HANE—Two p	ack, solvent-bo	rne																	
	PUR1		St 3	Epoxy mastic	C32	125	Poly-urethane gloss	C26	50 (see Note 2)	-	-	-	175	*	10-15	5-10	2-5	—	_	5-15	
	PUR2	A1.15	Sa 2½	Epoxy primer	C06	75	Poly-urethane gloss	C26	50 (see Note 2)	_	—	-	125	25+	10-25	5-10	2-5	_	—	5-15	
A1	PUR2a	A1.17	Sa 2½	Zinc rich primer	C01a C02	75	High Build Poly-urethane	C15	75 (see Note 2)	-	-	-	150	25+	15-25	10-15	5-10	2-5	2-5	10-15	
	PUR3	A4.08	Sa 2½	Epoxy primer	C06	75	High build epoxy	C13	125	Poly-urethane gloss	C26	50 (see Note 2)	250	*	25+	15-25	10-15	5-10	5-10	15-25	
	PUR4	A1.20	Sa 2½	Zinc rich primer	C01a C02	75	High build epoxy	C13	125	Poly-urethane gloss	C26	50 (see Note 2)	250	*	25+	15-25	10-15	5-10	5-10	15-25	
	PUR5	A1.23	Sa 2½	Zinc rich primer	C01a C02	75	High build epoxy	C13	200	Poly-urethane gloss	C26	50 (see Note 2)	325	*	25+	25+	25+	15-25	15-25	25+	56
A1	PUR6		St 3	Epoxy mastic	C32	75	Epoxy mastic	C32	75	High build poly-urethane	C15	75	225	*	15-25	10-15	5-10	2-5	2-5	5-15	
	PUR7	A1.19 A1.20	Sa 2½	Epoxy zinc primer	C02	75	Epoxy mastic	C32	75	High build poly-urethane	C15	75	225	*	25+	15-25	10-15	5-10	5-10	10-15	

* While this system would have very high durability in this atmospheric category, it is unlikely that it would be economic.

LEGEND:

PRN = Paint reference number (see Appendix D) DFT = Dry film thickness

Sa, St — See ISO 8501-1

NOTES:

1 ISO 12944-5:2007 equivalent designation (to within ±25 µm total DFT). The durability given in ISO 12944-5 of ISO equivalent may be different.

2 Some colour finishes may require multiple coats to achieve opacity.

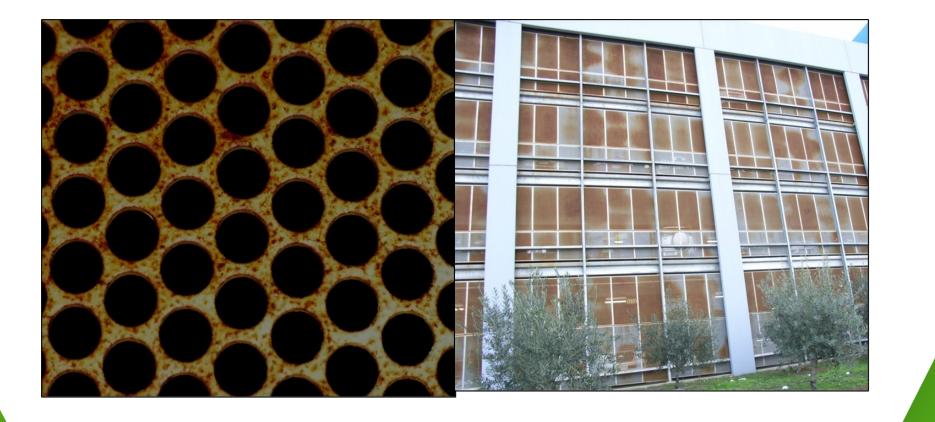
3 Accelerated testing of these systems suggests a much longer life expectancy than that nominated. However, because the organic polysiloxane systems are a recent development, no practical field experience greater than 20 years' service is available to confirm the accelerated testing results.

4 Some water-borne zinc silicate coating systems may give improved durability over solvent-borne zinc silicate coating systems when applied at the same film thickness.

2.4 Other Environments

Steelwork may be immersed in water or buried in soil Other prevention methods may be required, such as cathodic prevention The selection of such prevention methods requires specialist advice

- Narrow crevices
- Depressions
- Ledges
- Undrained flat surfaces
- Flat surfaces in loose contact where moisture can be drawn in between them by capillary action
- Poor air circulation
- Sharpe edges and corners
- Intermittent welding



3.3.3.7 Concrete

- Concrete that is partially embedded in concrete may be susceptible to corrosion within the concrete near the entry point and should be partially protected
- The coating on the steel should be non-conductive and extend a minimum of 50mm into the concrete and 100mm above.
- Where reinforcement is to be used in concrete, reference in Australia should be made to AS3600

WHAT CONTRIBUTES TO CONCRETE SPALLING?

Issues that can contribute to concrete spalling are:

- Faulty concrete specification or design
- Incorrect placement of rebar and/or mesh, resulting in inadequate concrete covering
- Poor site supervision during pouring, when the rebar is pushed too close to the surface of the concrete
- Lack of a protective "anti-carbonation" surface coating to prevent ingress of acidic chemicals

Low concrete cover and no protective coatings gave the rebars no protection from atmospheric acid attack

Section 4.2 Surface Preparation Methods

4.2.1 - Cleaning with Solvents or Alkaline Solutions To remove oil and grease

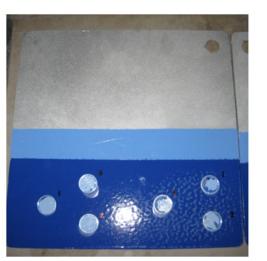
4.2.2 - Abrasive blast cleaning Most effective process for removing mill scale and rust and for creating an anchor pattern

4.2.3 - Power tool cleaning Power tool cleaning is usually employed where the nature of work does not demand the removal of all mill scale and other corrosion products from the steel. Short to medium term protection can be expected

Section 4.2 Surface Preparation Methods

3 key ingredients for preparation

- 1. Remove Contaminants
- 2. Remove Imperfections
- 3. Create a Profile



Section 4.2 Surface Preparation Methods

No preparation = 2.53 MPA

Abrasive Blast Clean = 9.6 MPA

Section 4.5 Rust Conversion

- Claim to convert rust to a chemical form
- Claim to provide a sound base for painting
- Considerable amount of published literature refutes these claims
- Many contain phosphoric acid, which under ambient conditions has little or no reaction with hydrated ferric oxide(Rust)
- Unreacted acid can be trapped beneath subsequently applied coatings

Section 6 – Paint Coating Systems for Corrosion Protection

3 Types of Protection


- 1. Sacrificial
- 2. Active
- 3. Passive

Section 6 – Sacrificial Protection

Aka "Galvanic Corrosion Protection" Zinc metal corrodes sacrificially in preference to the steel Zinc oxidises to zinc oxide Continues until all the zinc is depleted Examples include:

- hot dip galvanising
- inorganic zinc silicates
- organic zinc-rich primers
- metal-sprayed zinc

Batman Bridge Tas painted in an Ethyl Zinc Silicate remained corrosion free for 20 years. Only the A frame was topcoated and remained corrosion free for 30 years

Section 6 – Passive Protection

Locks out oxygen, water and ions from substrate. Offshore structures generally depend on barrier coatings alone to protect against corrosion Examples include:

- Epoxies
- Chlorinated rubbers

Most off shore structures use barrier protection only – sacrificial protection does not last long in a marine environment.

Section 6 – Active Protection

Zinc phosphate hydrolyses to produce zinc ions (Zn2+) & phosphate ions (PO43-)

Phosphate ions act as inhibitors by passivating the steel to inhibit corrosion

Zinc ions act as cathodic inhibitors Examples include:

- Zinc phosphate epoxy primers
- Zinc phosphate alkyd enamels

Section 6.3 - Coating systems for atmospheric environments

TYPICAL CHARACTERISTICS OF TOP COATS IN PARTICULAR ENVIRONMENTAL CONDITIONS

1	2	3	4	5	6	7	8	9	10	11	12	13
Coating type]		when expose tent splashes o			bility on sustai exposure to:	ined	Dry heat	Resistance to			Colour and gloss
(see Note 1)	Acid	Alkalis	Water, fresh or salt	Solvents	Weather	Water, fresh or salt	Soil	resistance, °C (see Note 2)	mechanical damage	Initial gloss level	Typical colour	retention on weathering
Acrylic—2-pack	G	Р	G	G	VG	VP	VP	90-100	VG	Flat to full gloss	Wide range	VG
Acrylic—latex	F-G	F-G	F-G	VP	VG	VP	VP	60-70	F	Flat to gloss	Wide range	VG
Alkyd	P-F	Р	Р	F	G	VP	VP	90-120	G	Flat to full gloss	Wide range	G
Epoxy —2-pack —mastic	G G	VG VG	E E	VG VG	G G	VG VG	VG G	90-120 90-120	VG VG	Flat to full gloss Low to semi	Wide range Wide range	P-F P-F
Polysiloxane (organic modified)	G	G	G	VG	VG-E	G	Р	120	VG	Flat to full gloss	Wide range	E
Polyurethane —2-pack —moisture cured	VG G	G G	E VG	VG VG	VG-E G-VG	G VG	G G	90-120 90-120	VG VG	Flat to full gloss Semi to gloss	Wide range Limited range	E
Silicones —silicone acrylic —high heat	G G	G E	VG E	P P-F	VG E	VP VP	VP VP	200-250 400	G G	Semi-gloss Semi-gloss	Limited range Limited range	G G
Zinc rich —2-pack organic —ethyl silicate —alkali silicate	VP VP VP	VP VP VP	F-G G G	G E E	F E E	VP P P	VP P P	120-250 400 400	E E E	Flat Flat Flat	Mostly grey Mostly grey Mostly grey	F F F

LEGEND:

VP = Very poor

P = Poor

F = Fair

G = Good VG = Verv good

E = Excellent

- E

Section 6.3 - Coating systems for atmospheric environments

					Coa	ting system detail	s							Du	rabilit	y—Yea	rs to first	maintenanc	e
			1st C	oat		2nd Coat			3rd Coat Total					Atmospheric corrosivity category					
System lesignation	ISO 12944-5 designation (Note 1)	Surface preparation	Type	PRN	Nom DFT µm	Туре	PRN	Nom DFT µm	Туре	PRN	Nom DFT µm	10m LFT µn	Cl Very low	C2 Low	C3 Med		C5-I Very high industrial	C5-M Very high marine	T Inland Tropic
POLYURET	HANE—Two p	ack, solvent-bo	rne																-
PURI		St 3	Epoxy mastic	C32	125	Poly-urethane gloss	C26	50 (see Note 2)	_	_	_	175	*	10-15	5-10	2-5			5-15
PUR2	A1.15	Sa 2½	Epoxy primer	C06	75	Poly-urethane gloss	C26	50 (see Note 2)	_	—	_	125	25+	10-25	5-10	2-5	_	—	5-15
PUR2a	A1.17	Sa 2½	Zinc rich primer	C01a C02	75	High Build Poly-urethane	C15	75 (see Note 2)	_	—	_	150	25+	15-25	10-15	5-10	2-5	2-5	10-15
PUR3	A4.08	Sa 2½	Epoxy primer	C06	75	High build epoxy	C13	125	Poly-urethane gloss	C26	50 (see Note 2)	250	*	25+	15-25	10-15	5-10	5-10	15-25
PUR4	A1.20	Sa 2½	Zinc rich primer	C01a C02	75	High build epoxy	C13	125	Poly-urethane gloss	C26	50 (see Note 2)	250	*	25+	15-25	10-15	5-10	5-10	15-25
PUR5	A1.23	Sa 2½	Zinc rich primer	C01a C02	75	High build epoxy	C13	200	Poly-urethane gloss	C26	50 (see Note 2)	325	*	25+	25+	25+	15-25	15-25	25+
PUR6		St 3	Epoxy mastic	C32	75	Epoxy mastic	C32	75	High build poly-urethane	C15	75	225	*	15-25	10-15	5-10	2-5	2-5	5-15
PUR7	A1.19 A1.20	Sa 2½	Epoxy zinc primer	C02	75	Epoxy mastic	C32	75	High build poly-urethane	C15	75	225	*	25+	15-25	10-15	5-10	5-10	10-15

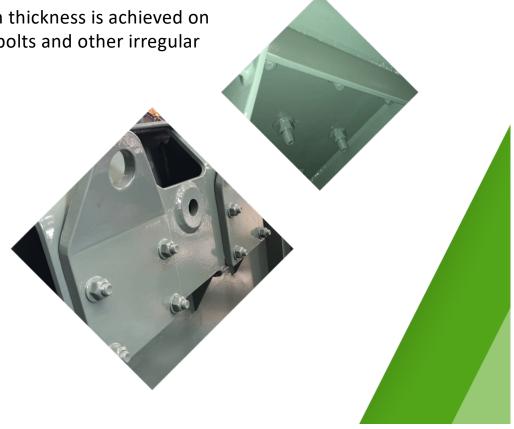
TABLE 6.3 (continued)

Section 6.3 - Coating systems for atmospheric environments

Abrasive blast (AS1627.9 Sa 2 ½) Zinc Rich Epoxy @ 75µm Epoxy @ 200µm Polyurethane @ 90 µm This coating system conforms to AS/NZS 2312.1 PUR 5 for long term protection (15-25 years) in a Category C5-M

(severe coastal) environment

Section 6.3 - Coating systems for atmospheric environments



Environment	: Soil											
EUH4	Sa 2½ (profile 75–100 μm)	Ultra high build epoxy	C34	1200	Ultra high build epoxy	C34	1200	—	_	—	2400	See Notes 5 and 6
EVH2	Sa 2½ (profile 50–75 μm)	Very high build epoxy	C13a	400							400	See Note 6
EVH3	Sa 2½ (profile 50–75 μm)	Very high build epoxy	C13a	250	Very high build epoxy	C13a	250	_	-	_	500	See Notes 4, 5 and 6
PUE2	Sa 3 (profile 75–100 μm)	Elastomeric Polyurethane/ polyurea	C43	2500							2500	See Note 6

7.10.2 & 7.10.3 – Stripe coating

Stripe Coating is a means to ensure adequate dry film thickness is achieved on edges, corners, welds, pitted surfaces, flanges, nuts ,bolts and other irregular surfaces

8.3 - Criteria to assessing when to paint or repair

TABLE 8.2

ASSESSMENT OF COATING CONDITION FOR FEASIBILITY OF REPAIR

Coating attribute	Test method	Repair* likely	Repair* possible	Repair* unlikely
Substrate corrosion	AS 1580.481.3	<10%	10-20%	>20%
Knife adhesion	AS 3894.9	Rating ≤3	Rating 4	Rating 5
Tensile adhesion	AS 3894.9	>2.0 MPa	1.0–2.0 MPa	<1.0 MPa
Film thickness	AS 3894.3	<500 µm	500–750 μm	>750 µm
Rust/Mill scale (Note 1)	ISO 8501-1	Not present or present and inactive	Not present or present and inactive	Loosely adhering rust/mill scale

* The repair method adopted will depend upon the economics of repairing.

9.4 Painting Project commencement meeting

- 1. Review Specification
- 2. Standards of work (This may be comparison standards)
- 3. Method of Inspection (This may be QA documentation)
- 4. Surface Preparation
- 5. Application Technique
- 6. Drying time required
- 7. Method of measurement
- 8. Method of handling steelwork
- 9. Reports required

9.4 Painting Project commencement meeting

- 1. Review Specification
- 2. Standards of work (This may be comparison standards)
- 3. Method of Inspection (This may be QA documentation)
- 4. Surface Preparation
- 5. Application Technique
- 6. Drying time required
- 7. Method of measurement
- 8. Method of handling steelwork
- 9. Reports required

The design life of a component is the life expectancy of the item

It is the length of time between placement into service of a single item and its onset of wear out

The protective coating system offers protection to the item

To achieve the design life of an item a maintenance program is required to revive the performance of the protective coating system

Case Study: Phillip Island Bridge (Vic)

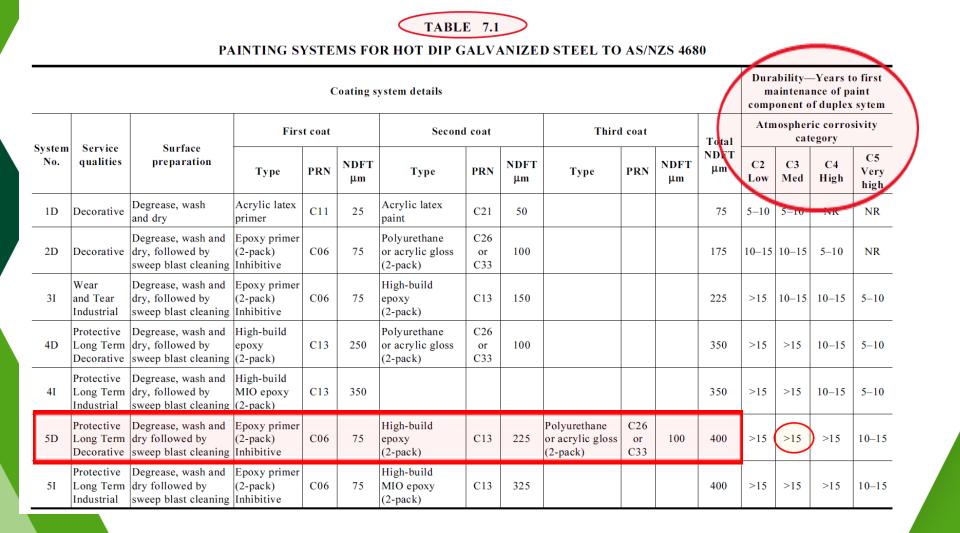
- 1. The Phillip Island Bridge is in a severe marine environment
- 2. The coating system is subject to constant abrasion, moisture, sodium chloride and high UV radiation
- 3. A 3-coat system had protected the steelwork for 20 years
- 4. Only some of the weld joints showed corrosion

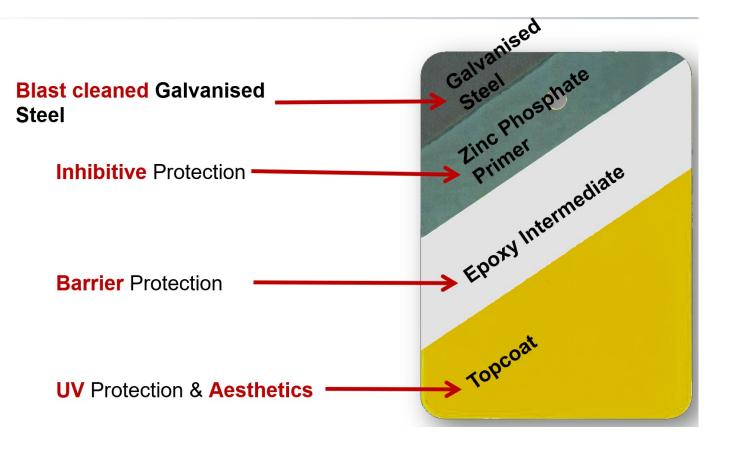
Case Study: Phillip Island Bridge (Vic)

- 1. Coating DFT $338\mu m$ average
- 2. Inspection rating 2 Soiled, stained, ingrained dirt, chalking or loss of gloss
- Inspection rating 3 -Minor film damage (cracking, flaking or erosion of topcoats) in small areas

 $\frac{\text{Expected Corrosion Rate as per AS2312.1 Table 2.1}{C4 \text{ Atmospheric Corrosivity Environment 20 Years}}$ Steel µm/year = 50µm - 80µm x 20 years = 1000µm / 1600µm Zinc µm/year = 2.1µm - 4.2µm x 20 years = 42µm / 84µm Protective Coating System – No Loss of Steel or Zinc

Duplex system AS2312.2


- The zinc-coated article can be further protected by the application of additional coatings
- 2. Hot dip galvanized coatings are sometimes required to be painted for decorative reasons
- 3. The Protective Coating system must take the primary role of protection when applied to avoid delamination


Duplex system AS2312.2

Duplex system AS2312.2

THANK YOU!

Adam Hockey adam.hockey@dulux.com.au

